skip to main content


Search for: All records

Creators/Authors contains: "Liu, Xiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract The Kähler potentials of modular symmetry models receive unsuppressed contributions which may be controlled by a flavor symmetry, where the combination of the two symmetry types is referred to as eclectic flavor symmetry. After briefly reviewing the consistency conditions of eclectic flavor symmetry models, including those with generalised (g)CP, we perform a comprehensive bottom-up study of eclectic flavor symmetry models based on Ω(1) ≅ ∆(27) ⋊ T ′, consisting of the flavor symmetry ∆(27) in a semi-direct product with the modular symmetry T ′. The modular transformations of different ∆(27) multiplets are given by solving the consistency condition. The eight nontrivial singlets of ∆(27) are related by T ′ modular symmetry, and they have to be present or absent simultaneously in any Ω(1) model. The most general forms of the superpotential and Kähler potential invariant under Ω(1) are discussed, and the corresponding fermion mass matrices are presented. Based on the eclectic flavor group Ω(1), two concrete lepton models which can successfully describe the experimental data of lepton masses and mixing parameters are constructed. For the two models without gCP, all six mixing parameters vary in small regions. A nearly maximal atmospheric mixing angle θ 23 and Dirac CP phase δ CP are obtained in the first model. After considering the compatible gCP symmetry and the assumption of $$ \mathfrak{R}\tau $$ R τ = 0 in the first model, the μ − τ reflection symmetry is preserved in the charged lepton diagonal basis. As a consequence, the atmospheric mixing angle and Dirac CP phase are predicted to be maximal, and two Majorana CP phases are predicted to be π . 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. A bstract We present a neutrino mass model based on modular symmetry with the fewest input parameters to date, which successfully accounts for the 12 lepton masses and mixing parameters through 6 real free parameters including the modulus. The neutrino masses are predicted to be normal ordering, the atmospheric angle θ 23 is quite close to maximal value and the Dirac CP phase δ CP is about 1 . 34 π . We also study the soft supersymmetry breaking terms due to the modulus F -term in this minimal model, which are constrained to be the non-holomorphic modular forms. The radiative lepton flavor violation process μ → eγ is discussed. 
    more » « less
  3. ABSTRACT

    We present the results of our study of cross-correlations between long-term multiband observations of the radio variability of the blazar 3C 279. More than a decade (2008–2022) of radio data were collected at seven different frequencies ranging from 2 to 230 GHz. The multiband radio light curves show variations in flux, with the prominent flare features appearing first at higher-frequency and later in lower-frequency bands. This behaviour is quantified by cross-correlation analysis, which finds that the emission at lower-frequency bands lags that at higher-frequency bands. Lag versus frequency plots are well fit by straight lines with negative slope, typically ∼−30 day GHz−1. We discuss these flux variations in conjunction with the evolution of bright moving knots seen in multiepoch Very Long Baseline Array maps to suggest possible physical changes in the jet that can explain the observational results. Some of the variations are consistent with the predictions of shock models, while others are better explained by a changing Doppler beaming factor as the knot trajectory bends slightly, given a small viewing angle to the jet.

     
    more » « less
  4. Abstract A novel Compton Scanner setup has been built, commissioned and operated at the Max-Planck-Institute for Physics in Munich to collect pulses from bulk events in high-purity germanium detectors for pulse shape studies. In this fully automated setup, the detector under test is irradiated from the top with 661.660 keV gammas, some of which Compton scatter inside the detector. The interaction points in the detector can be reconstructed when the scattered gammas are detected with a pixelated camera placed at the side of the detector. The wide range of accepted Compton angles results in shorter measurement times in comparison to similar setups where only perpendicularly scattered gammas are selected by slit collimators. In this paper, the construction of the Compton Scanner, its alignment and the procedure to reconstruct interaction points in the germanium detector are described in detail. The creation of a first pulse shape library for an n-type segmented point-contact germanium detector is described. The spatial reconstruction along the beam axis is validated by a comparison to measured surface pulses. A first comparison of Compton Scanner pulses to simulated pulses is presented to demonstrate the power of the Compton Scanner to test simulation inputs and models. 
    more » « less
  5. DNA methylation is an important epigenetic modification required for the specific regulation of gene expression and the maintenance of genome stability in plants and animals. However, the mechanism of DNA demethylation remains largely unknown. Here, we show that two SGS3-like proteins, FACTOR OF DNA DEMETHYLATION 1 (FDDM1) and FDDM2, negatively affect the DNA methylation levels at ROS1-dependend DNA loci in Arabidopsis. FDDM1 binds dsRNAs with 5′ overhangs through its XS (rice gene X and SGS3) domain and forms a heterodimer with FDDM2 through its XH (rice gene X Homology) domain. A lack of FDDM1 or FDDM2 increased DNA methylation levels at several ROS1-dependent DNA loci. However, FDDM1 and FDDM2 may not have an additive effect on DNA methylation levels. Moreover, the XS and XH domains are required for the function of FDDM1. Taken together, these results suggest that FDDM1 and FDDM2 act as a heterodimer to positively modulate DNA demethylation. Our finding extends the function of plant-specific SGS3-like proteins. 
    more » « less
  6. P-type point contact (PPC) germanium detectors are used in rare event and low-background searches, including neutrinoless double beta (0νββ) decay, low-energy nuclear recoils, and coherent elastic neutrino-nucleus scattering. The detectors feature an excellent energy resolution, low detection thresholds down to the sub-keV range, and enhanced background rejection capabilities. However, due to their large passivated surface, separating the signal readout contact from the bias voltage electrode, PPC detectors are susceptible to surface effects such as charge build-up. A profound understanding of their response to surface events is essential. In this work, the response of a PPC detector to alpha and beta particles hitting the passivated surface was investigated in a multi-purpose scanning test stand. It is shown that the passivated surface can accumulate charges resulting in a radial-dependent degradation of the observed event energy. In addition, it is demonstrated that the pulse shapes of surface alpha events show characteristic features which can be used to discriminate against these events. 
    more » « less
  7. null (Ed.)
  8. The electroencephalogram (EEG) is broadly used for research of brain activities and diagnosis of brain diseases and disorders. Although EEG provides good temporal resolution of millisecond or less, it does not provide good spatial resolution. There are two main reasons for the poor spatial resolution: the blurring effects of the head volume conductor and poor signal-to-noise ratio. We have developed a tripolar concentric ring electrode (TCRE) Laplacian sensor and now report on computer simulations comparing spatial resolution between conventional EEG disc electrode sensors and TCRE Laplacian sensors. We also performed visual evoked stimulus experiments and acquired visual evoked potentials (VEPs) from healthy human subjects. From the simulations, we found that TCRE Laplacian sensors can provide approximately a tenfold improvement in spatial resolution and pass signals from specific volumes. Placing TCRE sensors near the brain region of interest will allow passage of the wanted signals and rejection of distant interference signals. We were also able to detect VEPs on the scalp surface and show that TCREs separated VEP sources better than conventional disc electrodes. 
    more » « less